

Rev. 00

S-707 X L-8

SUBMERGED ARC WELDING CONSUMABLES FOR WELDING OF Mild & 490MPa CLASS HIGH TENSILE STEEL

HYUNDAI WELDING CO., LTD.

			S-707 X L-8				
• Specification	WIRE L-8	AWS A5.17/A5.17 F7A4-EL8	EN 760 S A AB 1				
* Applications	Single and m	nulti-layer welding of shipbu	uilding.				
Characteristics on Usage	As the penetration is deep, it is suitable for welding of thick plate in both side single-layer welding.						
	Impact Value (or mechanical properties) of weld metal and crack resistibility are excellent. Also applicable to one-side welding. As the consumption of flux is low, it is economical.						
Note on Usage	1. Dry the flu	ux at 300~350℃ for 60 minu	utes before use.				
	2. Pay attent deterioratic	ion to welding voltage. Exce n of joint properties.	essive welding voltage causes				
	3. Add new flux periodically to prevent the weld defects and bad bead appearance which occurs when continuously reusing the flux.						
	4. Weld pass manufactur	s should be limited to 3 or 4 es when welding more than	passes. (please inquire of the 5 passes)				

Welding Consumables for Test

✤ Flux

Concumphia	position, wt%			
Consumable	SiO2+TiO2	CaO+MgO	AI2O3+MnO	CaF2
S-707	15	30	40	15

Consumable	Particle Size (Mesh)	Type of Flux	В.І	H2O ₁₀₀₀ ₀/ CO2(%)
S-707	12 × 60	Agglomerated	1.6	0.03 / 0.63

Electrode

Consumable Dia. Chemical Composition, wt%						
Consumable	(mm)	с	Si	Mn	Р	S
L-8	4.0	0.05	0.02	0.52	0.017	0.012
AWS A5.17	EL8	≤0.10	≤0.07	0.25-0.60	≤0.030	≤0.030

This information is provided solely for the purpose of confirming product conformance with applicable standards. The serviceability of a product or structure utilizing this type of information is and must be the sole responsibility of the builder/user. Many variables beyond the control of HYUNDAI WELDING CO., LTD. affect the results obtained in applying this type of information. These variables include, but are not limited to, welding procedure, shielding gas, plate chemistry and temperature, weldment design, fabrication methods and service requirements.

Method by AWS Spec.

Mechanical Properties & Chemical Composition of All Weld Metal

* Welding Conditions

[Joint Preparation & Layer Details]

Base metal	:	SS 400
Particle size	:	12 X 60 (ASME)
Flux type	:	Agglomerated
Amp./ Volt./cpm	:	550 / 30 / 40
Stick-Out(mm)	:	30
Pre-Heat(℃)	:	R.T.
Interpass Temp.(℃)	:	<150
Polarity	:	AC

Mechanical Properties of All weld metal

Consumables	PWHT		Tensile Test	CVN Impact Test (Joule)	
	Condition	YS(MPa)	TS(MPa)	EI(%)	−40 °C
S-707/L-8	As welded	490	560	31	54
AWS A5.17	-	≥400	490~660	≥ 22	≥27J at −40 ℃

Chemical Analysis of All weld metal(wt%)

Consumables	С	Si	Mn	Р	S
S-707/L-8	0.07	0.40	1.40	0.028	0.015

This information is provided solely for the purpose of confirming product conformance with applicable standards. The serviceability of a product or structure utilizing this type of information is and must be the sole responsibility of the builder/user. Many variables beyond the control of HYUNDAI WELDING CO., LTD. affect the results obtained in applying this type of information. These variables include, but are not limited to, welding procedure, shielding gas, plate chemistry and temperature, weldment design, fabrication methods and service requirements.

Two-run Butt welding test

✤ Welding Conditions

				Weld	ing cor	ditions			
Joint preparation and layer details (B.M. AH36)	Wire dia. (mm)	Side	Polarity	Amp. (A)	Volt (V)	Speed (CPM)	Heat input (kJ/cm)	Inter pass temp. (℃)	
AH36	4.8	1st	AC	850	34	48	36.1		
2nd (Unit : mm)	4.0	2nd		950	35	48	41.6		
1st AH36	4 0	1st	40	850	35	25	71.4		
201 2nd (Unit : mm)		2nd	2nd		880	36	45	42.2	≤250
1st 70° AH36 7		1st	Д	950	36	40	51.3		
AH36 25t 2nd 70° (Unit : mm)	4.8	2nd	1 AC	1050	36	35	64.8		

Two-run Butt welding test

Consumables	Test Plate	Tensi	Tensile Test		ng test	CVN Impact Test (Joule)
	(mm)	TS(MPa)	EI(%)	Face	Root	−20 ℃
	AH36 (15)	554	Rupture Of B.M.	Good	Good	47
S-707 X L-8	AH36 (20)	545	Rupture Of B.M.	Good	Good	43
	AH36 (25)	566	Rupture Of B.M.	Good	Good	48

Mechanical Properties of All weld metal

Diffusible Hydrogen Content

* Welding Conditions

Wire	:	L-8	Amp.(A) / Volts(V)	:	625/30
Diameter(mm)	:	4.0	Stick-Out(mm)	:	30
Flow Rate(ℓ /min.)	:	_	Welding Speed	:	60 CPM
Welding Position	:	1G	Current Type & Polarity	:	DC(+)

* Result (ml/100g Weld Metal)

X1	X2	X3	X4
9.44	9.33	9.57	8.24

Average Hydrogen Content 9.15 ml / 100g Weld Metal

Approvals

Consumables	KR	ABS	LR	BV	DNV	GL	NK	RINA	MRS
S-707 X L-8	3TM 3YTM	3TM 3YTM	3TM 3YTM	АЗТМ АЗҮТМ	IIIYTM	3YTM	KAW2M KAW52M	3YM 3YT	3YTM
	1.6~6.4	1.6~6.4	1.6~6.4	2.4~6.4	2.4~6.4	2.4~6.4	2.4~6.4	1.2~6.4	1.2~6.4
S-707 X L-8 (2Pole)	_	_	3TM 3YTM 1.6~6.4			_	-	3YM 3YT 1.2~6.4	_

